

# Monoblock and stackable diverters **EDM-EDS**

Rev. 05 • September, 2024 TECHNICAL CATALOGUE



## HISTORY OF REVISIONS

| DATE            | PAGE         | CHANGED                                                                                                                    | REV. |
|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------|------|
| December, 2018  | -            | First edition                                                                                                              | 00   |
| November, 2019  | 20-21-25-26  | Updated assembly kits and RD04 added choice                                                                                | 01   |
| May, 2021       | 14-15        | Updated typical curves                                                                                                     | 02   |
| October, 2023   | 22 - 24      | Body with check valves added.<br>Pneumatic actuation added                                                                 | 03   |
| March, 2024     | 23 - 26 - 28 | Dimensional drawing and hydraulic schema with check<br>valve and pneumatic actuation added.<br>Updated compatibility table | 04   |
| September, 2024 | 30 - 31 - 32 | Spare parts list added                                                                                                     | 05   |

## ABOUT THE MANUAL

This manual contains the technical instructions for the diverters range. All information given in this manual is current and valid according to the information available at the time of publication. The data specified above only serve to describe the product. EBI Motion controls reserves to modify or revise the instructions without prior notice.

EBI Motion controls is not responsible for any damage caused by an incorrect use of the product. Please visit www.ebimc.com for the most recent version of this manual.

**Diverters** 

## CONTENTS

| 4  | INTRODUCTION                                                                                                                                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | GENERAL INFORMATION<br>HYDRAULIC OPERATING PRINCIPLE                                                                                              |
|    |                                                                                                                                                   |
| 6  | GENERAL INSTRUCTIONS                                                                                                                              |
| 8  | QUICK REFERENCE GUIDE                                                                                                                             |
|    | STANDARD THREADS                                                                                                                                  |
| 9  | PORT DETAILS                                                                                                                                      |
| 10 | DIMENSIONS - EDM08A                                                                                                                               |
| 11 | DIMENSIONS - EDS08A                                                                                                                               |
| 12 | DIMENSIONS - EDM10A                                                                                                                               |
| 13 | DIMENSIONS - EDS10A                                                                                                                               |
| 14 | TYPICAL CURVES - EDM08A/EDS08A                                                                                                                    |
| 15 | TYPICAL CURVES - EDM10A/EDS10A                                                                                                                    |
| 16 | TECHNICAL DATA                                                                                                                                    |
|    | HYDRAULIC STANDARD SPECIFICATIONS<br>MATERIAL STANDARD SPECIFICATIONS<br>SEALS                                                                    |
|    | HYDRAULIC FLUID                                                                                                                                   |
| 18 | APPLICATION AND SAFETY GUIDELINES<br>STORAGE OF NEW PRODUCT<br>SAFETY GUIDELINES                                                                  |
| 19 | <b>ORDERING CODES - MONOBLOCK DIVERTER</b>                                                                                                        |
| 20 | ORDERING CODES - STACKABLE DIVERTER<br>ASSEMBLY SECTION<br>BODY CLASSIFICATION<br>ASSEMBLY SPOOL<br>SOLENOIS ACTUATION TYPE<br>RETURN ACTION TYPE |
| 26 | COMPATIBILITY TABLE                                                                                                                               |
| 27 | INSTALLATION AND MAINTENANCE                                                                                                                      |
| 30 | SPARE PARTS LIST                                                                                                                                  |



## INTRODUCTION

#### **DIVERTERS**

EBI motion controls diverter valves (monoblock and stackable) are used to pilot remote of directional control valves, auxiliary valves, variable displacement pumps and motors, frictions and hydraulic brakes, all with high accuracy, safety and optimal performance. EBI motion controls diverters are maintenance free and have a long life cycle and are suited for specialized applications for a variety of mobile equipment such as:





## **EDM**

#### **MONOBLOCK DIVERTERS**

Usable as stand-alone. Directional spool valve with direct solenoid control. Coils with different connectors and voltage are available. Compact design and easy mounting. Integrated threaded ports.



## **EDS**

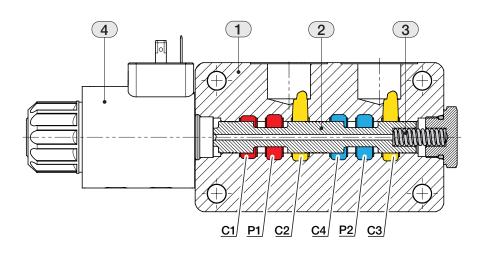
## STACKABLE DIVERTERS

Usable as multiple stackable units. Directional spool valve with direct solenoid control. Coils with different connectors and voltage are available. Compact design and easy mounting. Integrated threaded ports.

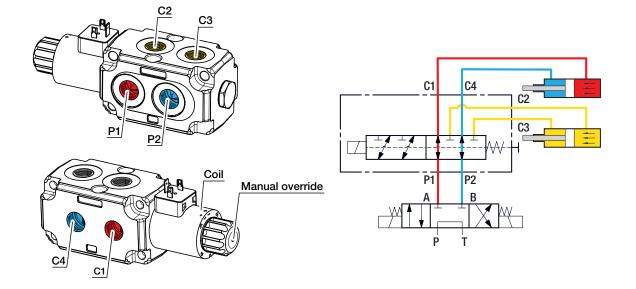


## **GENERAL INFORMATION**

#### HYDRAULIC OPERATING PRINCIPLE


EBI diverter valves are suitable to intercept and divert the flow on hydraulic system, wherever movement sequence or control selection of different actuators is needed.

A valve basically consists of a housing (1), a control spool (2), a return spring (3) and a solenoid (4).


It is designed to connect two inlet lines P1 - P2 (normally a set of hoses) and divert them to either the outlet ports (C1 - C4) with spool in position "0", when the solenoid is de-energized, or to the outlet ports (C2 - C3) with spool in position "1", when the solenoid is energized.

With the coil de-energized, the return spring pushes back the spool and holds it in position "0".

The coil is fastened to the tube by the ring nut. The manual override allows to shift the spool also in case of voltage shortage. An external drain, to be connected to tank, ensures shifting operations also at higher working pressure.



#### **EXAMPLE OF CONNECTION**



## **GENERAL INSTRUCTIONS**

#### **INTENDED USE**

EDM-EDS diverters are designed for industrial use.

#### WARRANTY

Check the package and the product for transport damage when receiving goods. The package is not meant for long term storage; protect the product appropriately.

Do not dismantle the product. The warranty is void if the product has been disassembled.

The manufacturer is not responsible for damages resulting from misinterpreted, noncompliance, incorrect, or improper use of the product that goes against the instructions given in this document.

#### **GENERAL SAFETY INSTRUCTIONS**

The following instructions apply to all procedures associated with the product. Read these instructions carefully and follow them closely.

- Use necessary personal protective equipment when working with the product.
- Support the product properly; make sure the product cannot fall over or turn around by accident.
- Use only appropriate equipment and attachments for lifting and trasferring the product.
- Always use the lifting equipment properly and check the load-bearing capacity.
- Prevent unintended use of the product during installation and maintenance procedures.

#### WARNING SYMBOL

The following symbols can be used in this manual:



Note: Useful information



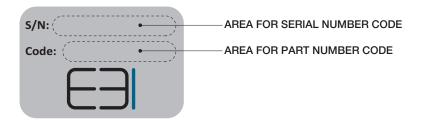
Danger: Danger of death or injury



Attention: May cause damage to the product



#### PRODUCT IDENTIFICATION


The product identification data can be found on the identification plate attached to the EBI product.

#### SERIAL NUMBER

all manufacturing data and all sales data can be found with the serial number

#### PART NUMBER CODE

It is a number univocally identifying the configuration and pressure setting of a valve





#### Note:

Serial number and part number code have 9 characters (letters and numbers).

#### UNITS OF MEASURE - CONVERSION FACTORS

| LENGHT           | FLOW RATE                | MASS             | FORCE WEIGHT     | PRESSURE           |
|------------------|--------------------------|------------------|------------------|--------------------|
| 1 mm = 0,0394 in | 1 I = 0,2200 gal UK      | 1 kg = 2,205 lb  | 1 N = 0,1020 Kgf | 1 bar = 100000 Pa  |
| 1 in = 25,4 mm   | 1 I = 0,2642 gal US      | 1 lb = 0,4536 kg | 1 Kgf = 9,8067 N | 1 bar = 14,5 psi   |
|                  | 1 gal UK = 4,546 l       |                  |                  | 1 Pa = 0,0001 bar  |
|                  | 1 gal UK = 1,2010 gal US |                  |                  | 1 Pa = 0,00014 psi |
|                  | 1 gal US = 3,785 l       |                  |                  | 1 psi = 0,0689 bar |
|                  | 1 gal US = 0,8327 gal UK |                  |                  | 1 psi = 6890 Pa    |

## QUICK REFERENCE GUIDE

| ТҮРЕ                                                                                             | EDM08A            | EDM10A            | EDS08A            | EDS10A                            |
|--------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-----------------------------------|
| Number of ways                                                                                   | 6-7*              | 6-7*              | 6-7*              | 6-7*                              |
| Number of sections                                                                               | 1                 | 1                 | 2-3-4             | 2-3-4                             |
| Nominal flow (I/min) - [GPM]                                                                     | <b>50</b> [14]    | <b>100</b> [28]   | <b>50</b> [14]    | <b>100</b> [28]                   |
| Internal leakage A(B) $\rightarrow$ T (cm <sup>3</sup> /min)<br>$\Delta$ p = 100 bar / T = 40° C |                   | min. 10 [0.61] -  | max. 20 [1.22]    |                                   |
| Operating pressure (bar) [psi]                                                                   | <b>250</b> [3625] | <b>250</b> [3625] | <b>250</b> [3625] | <b>250</b> [3625]                 |
| Operating pressure by using external drain (bar) [psi]                                           | <b>310</b> [4500] | <b>310</b> [4500] | <b>310</b> [4500] | <b>310</b> <i>[</i> 4500 <i>]</i> |
| Diverter valve stroke (mm) [in]                                                                  | <b>3,2</b> [0.13] | <b>3,2</b> [0.13] | <b>3,2</b> [0.13] | <b>3,2</b> [0.13]                 |
| SPOOL ACTUATION                                                                                  | EDM08A            | EDM10A            | EDS08A            | EDS10A                            |
| Solenoid 12 VDC                                                                                  | •                 | •                 | •                 | •                                 |
| Solenoid 24 VDC                                                                                  | ٠                 | •                 | •                 | •                                 |
| SPOOL ACTUATION                                                                                  | EDM08A            | EDM10A            | EDS08A            | EDS10A                            |
| Without drain                                                                                    | •                 | •                 | •                 | ٠                                 |
| With drain                                                                                       | •                 | •                 | •                 | •                                 |

(\*) = every diverter value is available on 7 ways with a special spool and a special plug.

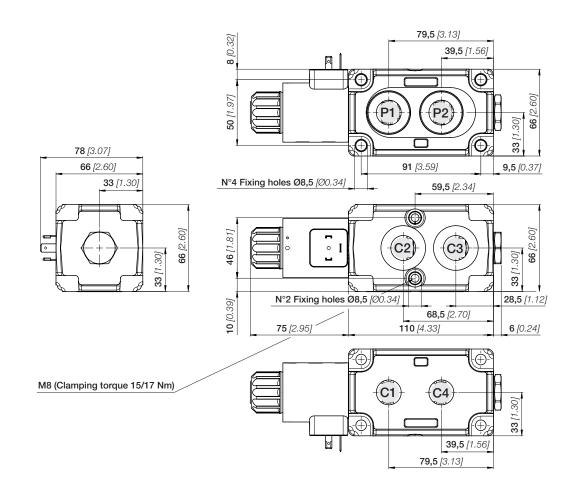
## **STANDARD THREADS**

| TYPE OF PORT           | TYPE OF THREAD     | EDM08A               | EDM10A                | EDS08A               | EDS10A                |  |  |
|------------------------|--------------------|----------------------|-----------------------|----------------------|-----------------------|--|--|
|                        | BSP - ISO 1179-1   | G 3/8                | G 1/2                 | G 3/8                | G 1/2                 |  |  |
| inlet port (P1 - P2)   | UN/UNF ISO 11926-1 | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) |  |  |
|                        | BSP - ISO 228 d    | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   |  |  |
|                        | BSP - ISO 1179-1   | G 3/8                | G 1/2                 | G 3/8                | G 1/2                 |  |  |
| service port (C1 - C4) | UN/UNF ISO 11926-1 | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) |  |  |
|                        | BSP - ISO 228 d    | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   |  |  |
|                        | BSP - ISO 1179-1   | G 3/8                | G 1/2                 | G 3/8                | G 1/2                 |  |  |
| service port (C2 - C3) | UN/UNF ISO 11926-1 | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) | 3/4-16 UNF<br>(SAE8) | 7/8-14 UNF<br>(SAE10) |  |  |
| BSP - ISO 228 d        |                    | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   | G 3/8<br>JIS B 2351  | G 1/2<br>JIS B 2351   |  |  |
| drain nort (D)         | BSP - ISO 1179-1   |                      | G                     | 1/4                  |                       |  |  |
| drain port (D)         | UN/UNF ISO 11926-1 | 7/16-20 UN (SAE4)    |                       |                      |                       |  |  |



## **PORT DETAILS**

The connection port size is indicated by an ordering code common for all EBI products. Following tables show all available connections.

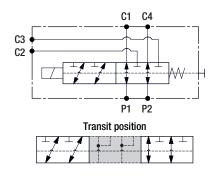

| BSP THREADS<br>ISO 1179-1 | D           | С  |      | В  |      | А   |       | CODE |
|---------------------------|-------------|----|------|----|------|-----|-------|------|
|                           | UNI-ISO 228 | mm | inc  | mm | inc  | mm  | inc   |      |
|                           | G 1/4       | 13 | 0.51 | 19 | 0.75 | 1   | 0.094 | 1B   |
|                           | G 3/8       | 13 | 0.51 | 25 | 0.98 | 1   | 0.04  | 2B   |
|                           | G 1/2       | 15 | 0.59 | 29 | 1.14 | 1.5 | 0.06  | 3В   |
|                           | G 3/4       | 17 | 0.67 | 36 | 1.42 | 1.5 | 0.06  | 4B   |
|                           | G 1         | 19 | 0.75 | 45 | 1.77 | 2   | 0.08  | 5B   |

| UN/UNF THREADS<br>ISO 11926-1 | D                        | C  |      | В  |      | L    |      | М   |       | К   | A   |      | CODE |
|-------------------------------|--------------------------|----|------|----|------|------|------|-----|-------|-----|-----|------|------|
|                               | ASA-B1-1                 | mm | inc  | mm | inc  | mm   | inc  | mm  | inc   |     | mm  | inc  |      |
|                               | 7/16-20 UNF<br>(SAE4)    | 12 | 0.47 | 19 | 0.75 | 12.5 | 0.49 | 2.4 | 0.095 | 12° | 1   | 0.04 | 0S   |
| K<br>L                        | 9/16-18 UNF<br>(SAE6)    | 13 | 0.51 | 26 | 1.02 | 15.6 | 0.61 | 2.5 | 0.098 | 12° | 1   | 0.04 | 1S   |
|                               | 3/4-16 UNF<br>(SAE8)     | 15 | 0.59 | 30 | 1.18 | 20.6 | 0.81 | 2.6 | 0.102 | 15° | 1.5 | 0.06 | 2S   |
|                               | 7/8-14 UNF<br>(SAE10)    | 17 | 0.67 | 34 | 1.34 | 23.9 | 0.94 | 2.6 | 0.102 | 15° | 1.5 | 0.06 | 3S   |
|                               | 1"1/16-12 UNF<br>(SAE12) | 20 | 0.79 | 41 | 1.61 | 29.2 | 1.15 | 3.3 | 0.13  | 15° | 1.5 | 0.06 | 4S   |
|                               | 1"5/16-12 UNF<br>(SAE16) | 20 | 0.79 | 50 | 1.97 | 35.5 | 1.40 | 3.3 | 0.13  | 15° | 2   | 0.08 | 5S   |

| BSP THREADS<br>ISO 228 d | D          | C  |      | В  |      | L    |      | М   |       | K   | А   |      | CODE |
|--------------------------|------------|----|------|----|------|------|------|-----|-------|-----|-----|------|------|
| B                        | JIS B 2351 | mm | inc  | mm | inc  | mm   | inc  | mm  | inc   |     | mm  | inc  |      |
|                          | G 3/8      | 12 | 0.47 | 26 | 1.02 | 18.6 | 0.73 | 2.5 | 0.098 | 15° | 1   | 0.04 | 2J   |
|                          | G 1/2      | 16 | 0.63 | 34 | 1.34 | 22.6 | 0.89 | 2.5 | 0.098 | 15° | 1.5 | 0.06 | ЗJ   |

## **DIMENSIONS - EDM08A**

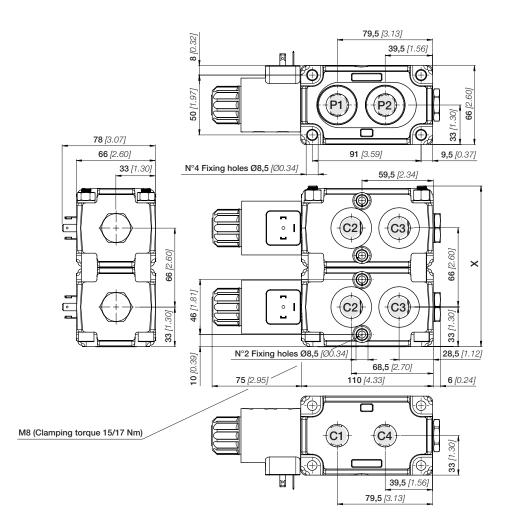
This drawing represents a EDM08A with DIN 43650 ISO 4400 Solenoid kit, internal drain circuit with BSP connections.




## TECHNICAL SPECIFICATIONS

| ТҮРЕ     | DIMENSION<br>mm - [in] | WEIGHT<br>kg - [lb] |
|----------|------------------------|---------------------|
| EDM08A/1 | <b>66 -</b> [2.60]     | <b>3,3</b> - [7,3]  |

## STANDARD CONNECTIONS

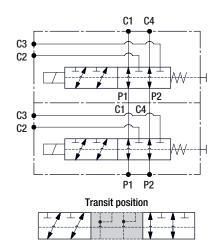

| TYPE<br>PORTS |       | UN-UNF<br>ISO 11926-1 | BSP<br>ISO 228 d   |
|---------------|-------|-----------------------|--------------------|
| P1 - P2       | G 3/8 | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |
| C1 - C4       | G 3/8 | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |
| C2 - C3       | G 3/8 | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |





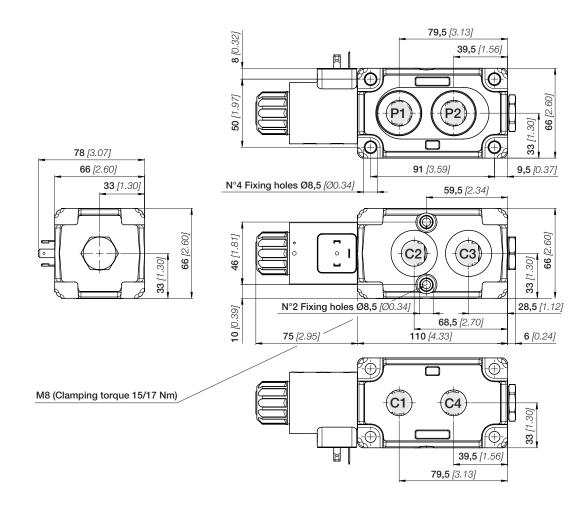
## DIMENSIONS - EDS08A

This drawing represents a EDS08A with DIN 43650 ISO 4400 Solenoid kit, internal drain circuit with BSP connections.




## TECHNICAL SPECIFICATIONS

| ТҮРЕ     | DIMENSION (X)<br>mm - [in] | WEIGHT<br>kg - [lb]  |
|----------|----------------------------|----------------------|
| EDS08A/2 | <b>136</b> - [5.36]        | <b>6,8</b> - [15]    |
| EDS08A/3 | <b>202 -</b> [7.96]        | <b>10,3</b> - [22.7] |
| EDS08A/4 | <b>268</b> - [10.56]       | <b>13,7</b> - [29.5] |

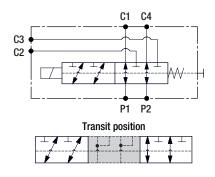

## STANDARD CONNECTIONS

| TYPE<br>PORTS | BSP<br>ISO 1179-1 | UN-UNF<br>ISO 11926-1 | BSP<br>ISO 228 d   |
|---------------|-------------------|-----------------------|--------------------|
| P1 - P2       | G 3/8             | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |
| C1 - C4       | G 3/8             | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |
| C2 - C3       | G 3/8             | 3/4-16 UNF (SAE8)     | G 3/8 (JIS B 2351) |



## **DIMENSIONS - EDM10A**

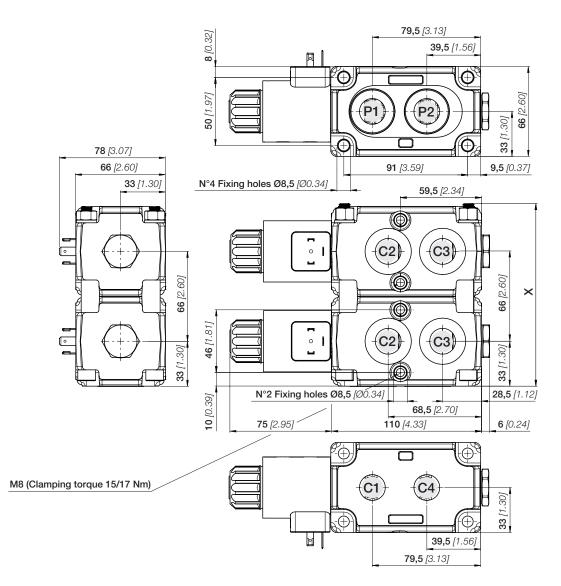
This drawing represents a EDM10A with DIN 43650 ISO 4400 Solenoid kit, internal drain circuit with BSP connections.




## TECHNICAL SPECIFICATIONS

| ТҮРЕ     | DIMENSION<br>mm - [in] | WEIGHT<br>kg - [lb] |
|----------|------------------------|---------------------|
| EDM10A/1 | <b>66 -</b> [2.60]     | <b>3,3 -</b> [7,3]  |

## STANDARD CONNECTIONS

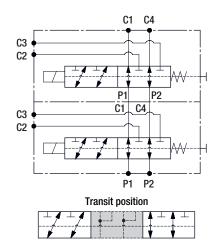

| TYPE<br>PORTS |       | UN-UNF<br>ISO 11926-1 | BSP<br>ISO 228 d   |
|---------------|-------|-----------------------|--------------------|
| P1 - P2       | G 1/2 | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |
| C1 - C4       | G 1/2 | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |
| C2 - C3       | G 1/2 | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |





## DIMENSIONS - EDS10A

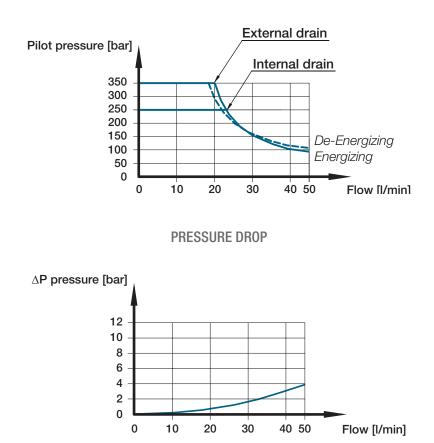
This drawing represents a EDS10A with DIN 43650 ISO 4400 Solenoid kit, internal drain circuit with BSP connections.




## TECHNICAL SPECIFICATIONS

| ТҮРЕ     | DIMENSION (X)<br>mm - [in]  | WEIGHT<br>kg - [lb]  |
|----------|-----------------------------|----------------------|
| EDS10A/2 | <b>136</b> - <i>[</i> 5.36] | <b>6,8</b> - [15]    |
| EDS10A/3 | <b>202 -</b> [7.96]         | <b>10,3</b> - [22.7] |
| EDS10A/4 | <b>268 -</b> [10.56]        | <b>13,7</b> - [29.5] |

## STANDARD CONNECTIONS

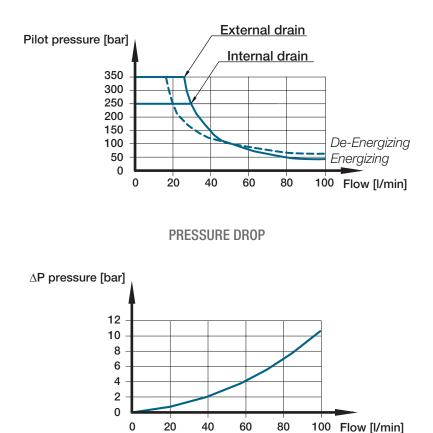

| TYPE<br>PORTS | BSP<br>ISO 1179-1 | UN-UNF<br>ISO 11926-1 | BSP<br>ISO 228 d   |
|---------------|-------------------|-----------------------|--------------------|
| P1 - P2       | G 1/2             | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |
| C1 - C4       | G 1/2             | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |
| C2 - C3       | G 1/2             | 7/8-14UNF (SAE10)     | G 1/2 (JIS B 2351) |





## TYPICAL CURVES - EDM08A/EDS08A

All information and diagrams in this manual refer to a mineral base oil ISO-VG46 at  $40^{\circ} \pm 5^{\circ}$ C temperature (32 cSt kinematic viscosity).




PERFORMANCE DATA - Pressure characteristic as function of flow



## TYPICAL CURVES - EDM10A/EDS10A

All information and diagrams in this manual refer to a mineral base oil ISO-VG46 at  $40^{\circ} \pm 5^{\circ}$ C temperature (32 cSt kinematic viscosity).



PERFORMANCE DATA - Pressure characteristic as function of flow

## TECHNICAL DATA

All performances in this catalogue are obtained using mineral based hydraulic oil 46 cSt viscosity at 40°C (ISO VG 46 viscosity class). All diverters go through functional testing at these conditions before shipment.

#### HYDRAULIC STANDARD SPECIFICATIONS

| Hydraulic fluid         | Mineral Oil HL, HLP (DIN 51524) phosphate ester (HFD-R) |
|-------------------------|---------------------------------------------------------|
| Fluid temperature range | 20°C +80°C [-4°F +176°F]                                |
| Fluid viscosity range   | 10 ÷ 380 cSt                                            |
| Max contamination level | 9 (NAS 1638) - 20/18/15 (ISO 4406:1999)                 |
| Recommended filtration  | <u>B10 &gt; 75</u> - (ISO 16889:20008)                  |

MATERIAL STANDARD SPECIFICATIONS

Body material .....Cast iron

#### **SEALS**

<u>O-Rings:</u> Buna N (acrylonitrile butadiene), also named NBR (according to ASTM), compatible with fluids having mineral oil base, water in oil emulsions, and water glycol fluids. These seals are standard for temperatures within the range -20°C and +80°C

<u>Back-up rings and Slide rings</u>: strengthened PTFE (Politetrafluoroetilene like Teflon®, Lubriflon®, Ecoflon®, or similar).

Special FPM (Viton®) seals are available on request.

<u>Note:</u> the seal materials are compatible with the fluids normally used in hydraulic systems; in case of special fluids, if you suspect incompatibility between the fluid used and the standard seals, contact the EBI motion controls service network.

## HYDRAULIC FLUID

Mineral oil based hydraulic fluids suitable for hydraulic systems can be used; they should have physical lubricating and chemical properties as specified by:

MINERAL OIL BASED HYDRAULIC FLUIDS HL (DIN 51524 part 1)

MINERAL OIL BASED HYDRAULIC FLUIDS HLP (DIN 51524 part 2)

For use of environmentally friendly fluids (vegetable or polyglycol base), or other fluids, please contact EBI.

| OIL AND SOLUTIONS - ISO 6743/4        | (°C) MIN | (°C) MAX | COMPATIBLE SEAL |
|---------------------------------------|----------|----------|-----------------|
| Mineral Oil HL, HM or HLP             | -25      | +80      | NBR             |
| Oil in water emulsion HFA             | +5       | +55      | NBR             |
| Oil in water emulsion HFB             | +5       | +55      | NBR             |
| Polyglycol-based aqueous solution HFC | -10      | +60      | NBR             |

Hydraulic fluids are available in different viscosity classes identified by the ISO VG number, which corresponds to the kinematic viscosity at 40°C. Here is a table showing typical viscosity changes between 0°C and 100°C for mineral oil based fluids having various viscosity classes. The fluid should be selected with the aim to achieve an appropriate operating viscosity at the expected working temperature.

## Diverters

|                 | VISCOSITY CLASS A | ND FILTRATION DATA        |                  |
|-----------------|-------------------|---------------------------|------------------|
| Vicessity       |                   | kinematic viscosity (cSt) |                  |
| Viscosity class | maximum (0° C)    | medium (40° C)            | minimum (100° C) |
| ISO VG 10       | 90                | 10                        | 2.4              |
| ISO VG 22       | 300               | 22                        | 4.1              |
| ISO VG 32       | 420               | 32                        | 5.0              |
| ISO VG 46       | 780               | 46                        | 6.1              |
| ISO VG 68       | 1400              | 68                        | 7.8              |
| ISO VG 100      | 2560              | 100                       | 9.9              |
|                 |                   |                           |                  |

#### FLUID CLEANLINESS REQUIREMENTS

The cause of malfunctions in hydraulics is often found to be excessive fluid contamination. The hard contaminant particles in the fluid wear the hydraulic components and prevent the poppets from re-seating, with consequent internal leakage and system inefficiency. For the correct operation it is necessary to adopt filtration methods which guarantee for life the specified fluid cleanliness level. It is important to ensure that hydraulic fluids are brought to the appropriate cleanliness level prior filling up the systems, and, when in doubt, also to flush the hydraulic components prior to installation.

#### FILTRATION RATIO BETA,:

It is the ratio between the number of particles before and after the filter with diameter larger than X micron.

#### **ABSOLUTE FILTRATION RATIO ISO 4572:**

It is the diameter X of the largest particle with  $BETA_x \ge 75$ .

#### CONTAMINATION CLASS ISO 4406:

It is expressed by 3 scale numbers representing respectively: the number of particles equal to or larger than  $4\mu m$ , the number of particles equal to or larger than  $6\mu m$ , the number of particles equal to or larger than  $14\mu m$  contained in 1 ml of fluid.

#### **CONTAMINATION CLASS NAS 1638:**

it's expressed by one scale numbers representing the number of particles of different size ranges contained in 1 ml of fluid.

| FILTRATION RECOMMENDATION                                                                                                                      |                        |                                  |                     |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|---------------------|----------|--|--|
| _                                                                                                                                              | Nominal                | Absolute filtation rating        | Contamination class |          |  |  |
| Туре                                                                                                                                           | filtration<br>(micron) | ISO 4572 (BETA <sub>x</sub> ≥75) | ISO 4406            | NAS 1638 |  |  |
| System/components operating at<br>HIGH PRESSURE > 250 bar<br>HIGH DUTY CYCLE APPLICATIONS<br>Systems/components with<br>LOW dirt tolerance     | 10                     | X = 10 12                        | 19/17/14            | 8        |  |  |
| System/components operating at<br>MEDIUM HIGH PRESSURE<br>HIGH DUTY CYCLE APPLICATIONS<br>Systems/components with<br>MODERATELY dirt tolerance | 15                     | X = 12 15                        | 20/18/15            | 9        |  |  |
| System/components operating at<br>LOW PRESSURE < 100 bar<br>LOW DUTY CYCLE APPLICATIONS<br>Systems/components with<br>GOOD dirt tolerance      | 25                     | X = 15 25                        | 21/19/16            | 10       |  |  |



#### Attention:

If the filtration demands are not met, the valve poppets can jam in the open position, with the result that the valve remains actuated. It is not possible to force back jammed poppets mechanically.

## APPLICATION AND SAFETY GUIDELINES

#### STORAGE OF NEW PRODUCTS

Encapsulated by a protective wrapping, the products shall not be exposed to direct sunlight nor to source of heat or ozone and kept in a dry place at a temperature between  $-20^{\circ}C + 50^{\circ}C$ .

#### SAFETY GUIDELINES

During any operation on diverters, it is recommended to pay attention to components surfaces temperature.

#### **STOCKING DIVERTERS**

Encapsulated by a protective wrapping, the diverters shall not be exposed to direct sunlight nor to source of heat o ozone (like electric motors running) and kept in a dry place at a temperature between -20°C +50°C

#### **DIVERTERS INSTALLATION**

It is recommended to follow these steps:

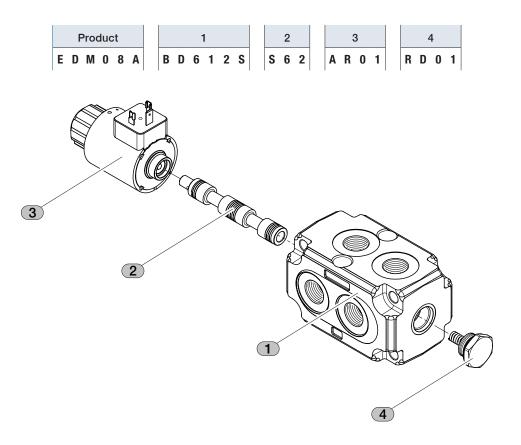
- Inspect the sub-plate to ensure that it is in good conditions and no external contaminant is present
- Check that O-Rings are intact and correctly positioned
- Don't tighten screws or connectors more than the maximum torque specified in the catalogue.

#### INLET VOLTAGE AND WORKING DUTY

To obtain correct operation and long life of coils it is necessary that the operating voltage fluctuations do not exceed +5% -10% of nominal voltage.

The working duty ED of a coil is the ratio between energized time and full cycle time.

All coils are rated for ED = 100% provided that temperature limit of their insulation class in not exceeded.




#### Attention:

These guidelines are not intended to be considered as complete

## ORDERING CODES - MONOBLOCK DIVERTER

The order code below provides an example of **MONOBLOCK DIVERTER EDM08A** with standard configuration. This example represents a EDM08A with solenoid kit, plug without drain and SAE arrangement. See pages 19 - 25 for more information about the different options available.



| POSITION | CODE          | DESCRIPTION            | PAGE |
|----------|---------------|------------------------|------|
|          | EDM08A        | Product                | 19   |
| 1        | <b>BD612S</b> | Body classification    | 22   |
| 2        | S62           | Assembly spool         | 24   |
| 3        | AR01          | Solenoid actuation kit | 25   |
| 4        | RD01          | Return action type     | 27   |

| PRODUCT | DESCRIPTION        | NOMINAL FLOW           | THREAD PORTS                                  |
|---------|--------------------|------------------------|-----------------------------------------------|
| EDM08A  | Monoblock diverter | 50 (l/min) - 14 [GPM]  | G 3/8 - 3/4 16 UNF (SAE8) - G 3/8 JIS B 2351  |
| EDM10A  | Monoblock diverter | 100 (I/min) - 28 [GPM] | G 1/2 - 7/8 14 UNF (SAE10) - G 1/2 JIS B 2351 |

## ORDERING CODES - STACKABLE DIVERTER

The order code below provides an example of **STACKABLE DIVERTER EDS08A** with standard configuration. This example represents a EDS08A with solenoid kit, plug without drain and SAE arrangement. See pages 20 - 25 for more information about the different options available.

| Product | 1       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         | 4       | 5                      | 2           | 3     | 3       | 5       |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------------------------|-------------|-------|---------|---------|
| EDSO8A  | N 2     | B D 6 1 2 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S 6 2     | A R 0 1 | R D 0 1                | B D 6 1 2 S | S 6 2 | A R 0 1 | R D 0 1 |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 4       |                        |             |       |         |         |
|         |         | Secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d section |         | <b>B</b>               |             |       |         |         |
|         |         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |         |                        |             |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | $\widehat{\mathbf{A}}$ | 3 2         | AD    |         |         |
|         | First s | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         | y C                    |             |       |         |         |
|         |         | and the second s | 1 Con     | 3       | 2                      |             |       | S . D   |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       | Ser .   | )       |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /         |         | R 🕅                    | Z'n I       |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /         |         | X                      |             |       | 5       |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |
|         | As      | sembly section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on kit 🦳  |         | @ )~3                  |             | 5     |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |
|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                        |             |       |         |         |

| POSITION |   | CODE   | DESCRIPTION            | PAGE |
|----------|---|--------|------------------------|------|
|          |   | EDS08A | Product                | 20   |
| info     | 1 | N2     | Assembly section kit   | 21   |
|          | 2 | BD612S | Body classification    | 22   |
| first    | 3 | S62    | Assembly spool         | 24   |
| section  | 4 | AR01   | Solenoid actuation kit | 25   |
|          | 5 | RD01   | Return action type     | 27   |
|          | 2 | BD612S | Body classification    | 22   |
| second   | 3 | S62    | Assembly spool         | 24   |
| section  | 4 | AR01   | Solenoid actuation kit | 25   |
|          | 5 | RD01   | Return action type     | 27   |

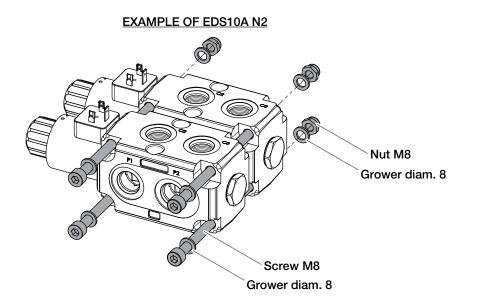


#### Note:

Ordering code from position 2 to 5, must be repeated for each section.

The maximum number of sections available is 4.

#### EXAMPLE OF EDS08A WITH 4 SECTION:


EDS08A N4 BD612S S61 AR01 RD01 BD612S S61 AR01 RD01 BD612S S61 AR01 RD01 BD612S S61 AR01 RD01

| PRODUCT | DESCRIPTION        | NOMINAL FLOW           | THREAD PORTS                                  |
|---------|--------------------|------------------------|-----------------------------------------------|
| EDS08A  | Stackable diverter | 50 (l/min) - 14 [GPM]  | G 3/8 - 3/4 16 UNF (SAE8) - G 3/8 JIS B 2351  |
| EDS10A  | Stackable diverter | 100 (I/min) - 28 [GPM] | G 1/2 - 7/8 14 UNF (SAE10) - G 1/2 JIS B 2351 |



#### **ASSEMBLY SECTION**

All stackable diverters include an assembly section kit. Each assembly section is composed by 4 screw, 8 growers and 4 nuts. Screw's lenght depends on the number of sections.



| CODE | DESCRIPTION             | LENGHT SCREW              | CLAMPING TORQUE | DRAWING |
|------|-------------------------|---------------------------|-----------------|---------|
| N2   | Assembly for 2 sections | <b>125 mm</b> - 4.925 in  | 15/17 Nm        |         |
| N3   | Assembly for 3 sections | <b>190 mm</b> - 7.486 in  | 15/17 Nm        |         |
| N4   | Assembly for 4 sections | <b>255 mm</b> - 10.047 in | 15/17 Nm        |         |

Body Classification

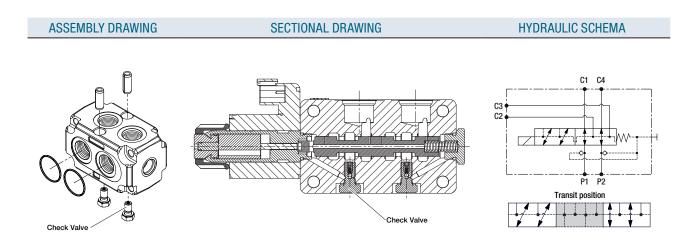
| Pr  | oduct |   |   |   | 1 |   |   |   |   | 2 |   |   | ; | 3 |   |   | 4 | 1 |   |  |
|-----|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| EDM | 108   | • | В | D | 6 | 1 | 2 | S | S | 6 | 2 | A | R | 0 | 1 | R | D | 0 | 1 |  |

Diverter arrangement body is available in two configurations: SAE thread or BSP thread.

All threads present in each body are equal.

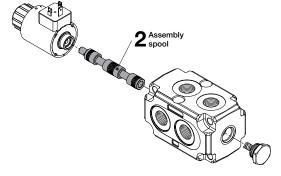
Body with JIS threads are available on request.

| CODE   | DESCRIPTION                                                          | DRAWING  | EDM08A<br>EDS08A | EDM10A<br>EDS10A |
|--------|----------------------------------------------------------------------|----------|------------------|------------------|
| BD612S | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>3/4"-16 UNF (SAE8)  |          | •                |                  |
| BD612B | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>G 3/8               |          | •                |                  |
| BD612J | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>G 3/8 JIS B 2351    |          | •                |                  |
| BD622S | Standard body<br>with check valves<br>3/4"-16 UNF (SAE8)             |          | •                |                  |
| BD622B | Standard body<br>with check valves<br>G 3/8                          |          | •                |                  |
| BD613S | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>7/8"-14 UNF (SAE10) |          |                  | •                |
| BD613B | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>G 1/2               | PI P2    |                  | •                |
| BD613J | Standard body<br>with ports P1-P2-C1-C4-C2-C3<br>G 1/2 JIS B 2351    |          |                  | •                |
| BD623S | Standard body<br>with check valves<br>7/8"-14 UNF (SAE10)            |          |                  | •                |
| BD623B | Standard body<br>with check valves<br>G 1/2                          |          |                  | •                |
|        | Note:                                                                |          | Spring pin       |                  |
|        | All arrangement bodies are equip<br>2 spring pins and 2 o-rings.     | ped with | DIN 7346 10x26   |                  |


P2 P1

O-ring 90SH

#### **BODY CLASSIFICATION**

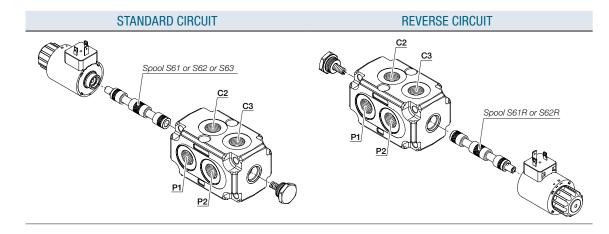

#### ARRANGEMENT BODY WITH CHECK VALVE

All arrangement bodies are equipped with 2 check valves. Body with check valve are available only with spool type S63.



## **ASSEMBLY SPOOL**

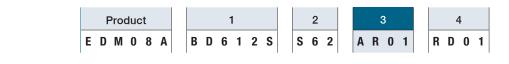
| Product     | 1      | 2     | 3       | 4       |
|-------------|--------|-------|---------|---------|
| E D M O 8 A | BD612S | S 6 2 | A R 0 1 | R D 0 1 |




Each diverter contains a spool; each spool is compatible with all solenoid actuation type and all return action type.

The spools of the diverters can be mounted in two modality: **STANDARD circuit** and **REVERSE** circuit.

If you wish to change the mounting modality, swap the position of the solenoid actuation kit and return action kit; the position of the body does not change.


| CODE | DESCRIPTION                                                                                     | SYMBOL                                                                                   |
|------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| S61  | Spool 2 positions with ports<br>CLOSED in transit position - STANDARD                           | C1 C2 C4 C3 Transit position<br>$ \begin{array}{c}                                     $ |
| S62  | Spool 2 positions with ports<br>CONNECTED in transit position - STANDARD                        | C1 C2 C4 C3 Transit position<br>P1 P2                                                    |
| S61R | Spool 2 positions with ports<br>CLOSED in transit position - REVERSE                            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                   |
| S62R | Spool 2 positions with ports<br>CONNECTED in transit position - REVERSE                         | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                  |
| S63  | Spool 2 positions with ports<br>CONNECTED in transit position - STANDARD<br>only external drain | C1 C2 C4 C3 Transit position<br>P1 P2                                                    |



3 Solenoid actuation

I COCOS

### SOLENOID ACTUATION TYPE



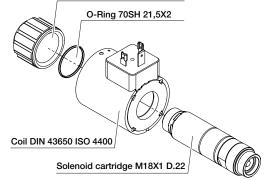
Solenoid actuation type is available in 3 configurations; all solenoids are perfectly interchangeable.

- DIN 43650 ISO 4400
- DEUTSCH DT04
- AMP JUNIOR Class H

For different applications or connector type, contact our Sales Office.

| CODE | DESCRIPTION                                        | CONNECTOR TYPE     | INSULATION CLASS |
|------|----------------------------------------------------|--------------------|------------------|
| AR01 | Solenoid kit (12 VDC - Class H)                    | DIN 43650 ISO 4400 | IP65             |
| AR02 | Solenoid kit (24 VDC - Class H)                    | DIN 43650 ISO 4400 | IP65             |
| AR03 | Solenoid kit (12 VDC - Class H)                    | DEUTSCH DT04-2P-L  | IP69             |
| AR04 | Solenoid kit (24 VDC - Class H)                    | DEUTSCH DT04-2P-L  | IP69             |
| AR05 | Solenoid kit (12 VDC - Class H)                    | AMP JUNIOR         | IP65             |
| AR06 | Solenoid kit (24 VDC - Class H)                    | AMP JUNIOR         | IP65             |
| AR07 | Actuation kit without coil                         |                    |                  |
| AR08 | Solenoid kit (12 VDC - Class H) with override knob | DIN 43650 ISO 4400 | IP65             |
| AR09 | Solenoid kit (24 VDC - Class H) with override knob | DIN 43650 ISO 4400 | IP65             |
| AR23 | Solenoid kit (12 VDC - Class H) with override knob | DEUTSCH DT04-2P-L  | IP69             |
| AR24 | Solenoid kit (24 VDC - Class H) with override knob | DEUTSCH DT04-2P-L  | IP69             |
| AR25 | Solenoid kit (12 VDC - Class H) with override knob | AMP JUNIOR         | IP65             |
| AR26 | Solenoid kit (24 VDC - Class H) with override knob | AMP JUNIOR         | IP65             |



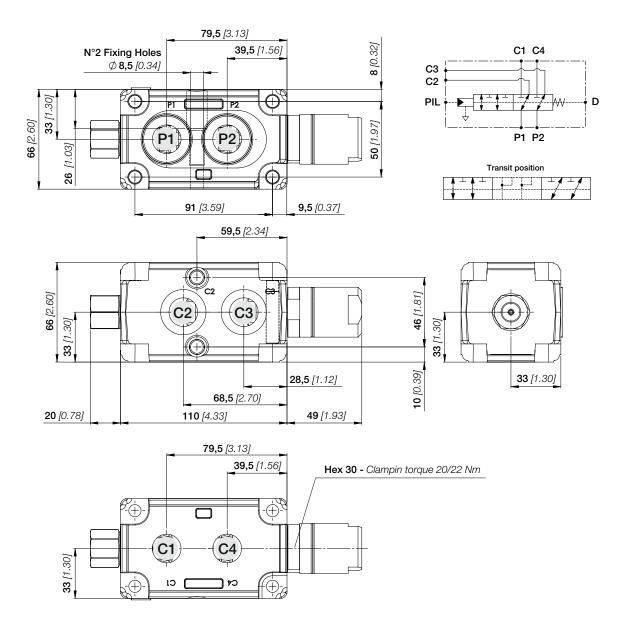

#### Note:

Solenoid actuation kit is equipped with solenoid cartridge, coil, o-rings and plastic plug keeping coil (see drawing on the right).

| TECHNICAL SPECIFICATIONS |        |            |         |  |  |  |  |  |
|--------------------------|--------|------------|---------|--|--|--|--|--|
| voltage                  | power  | resistance | current |  |  |  |  |  |
| 12 VDC                   | 32.7 W | 4.41 Ohm   | 2.72 A  |  |  |  |  |  |
| 24 VDC                   | 31 W   | 18.6 Ohm   | 1.29 A  |  |  |  |  |  |
| 12 VDC                   | 32.7 W | 4.41 Ohm   | 2.72 A  |  |  |  |  |  |
| 24 VDC                   | 31 W   | 18.6 Ohm   | 1.29 A  |  |  |  |  |  |

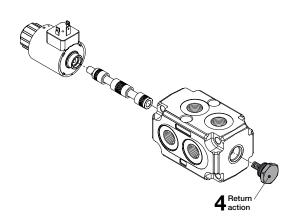
#### EXAMPLE OF AR01 KIT

#### Plastic plug keeping coil D.22




## PNEUMATIC ACTUATION TYPE

| CODE | DESCRIPTION                       | NOTE                                                          |
|------|-----------------------------------|---------------------------------------------------------------|
| AR10 | Pneumatic actuation (G 1/4)       | With external drain Pilot Pressure = min. 5 bar (7p psi)      |
| AR11 | Pneumatic actuation (7/16-20 UNF) | With internal drain Pilot Pressure = 1/10 of working pressure |


#### DIMENSIONAL DRAWING AND HYDRAULIC SCHEMA

This drawing represent a EDM08A with Pneumatic actuation with external drain circuit

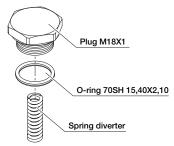


## **RETURN ACTION TYPE**





Each diverter can be set up in two configurations:


- Internal drain
- External drain

The transformation from one circuit to another can be done by replacing the return action plug kit. For different applications, contact our Sales Office.

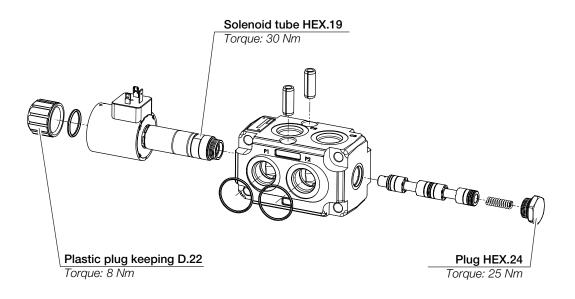
| CODE | DESCRIPTION                                                                                                        | DRAWING            | SYMBOL |
|------|--------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| RD01 | Plug kit <b>INTERNAL</b> drain                                                                                     |                    |        |
| RD02 | Plug kit EXTERNAL drain<br>(Port 7/16-20 UNF SAE4)<br>Only for arrangement body<br>with SAE port (BD612S - DB613S) | 7/16-20 UNF (SAE4) |        |
| RD03 | Plug kit EXTERNAL drain<br>(Port G 1/4)<br>Only for arrangement body<br>with BSP port (BD612B - BD613B)            | G 1/4              |        |
| RD04 | Plug kit EXTERNAL drain<br>(Port G 1/4 JIS)<br>Only for arrangement body<br>with BSP JIS port (BD612J - BD613J)    | G 1/4 JIS          |        |
|      | Note:                                                                                                              | EXAMPLE OF RD01 P  | LUG    |



Return action plug kit is equipped with plug, o-ring and spring (see following drawing).

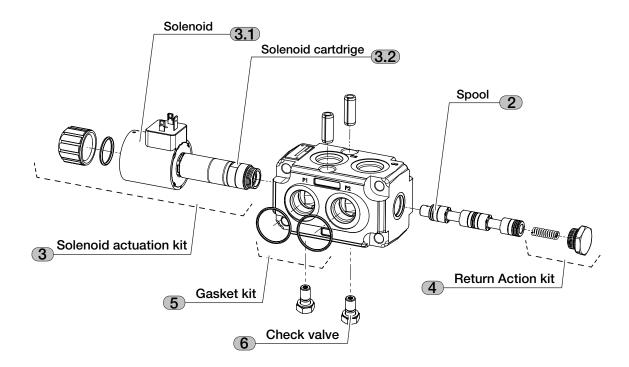


## **COMPATIBILITY TABLE**

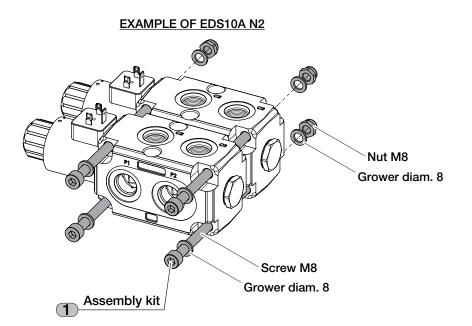

| BODY   |     |      | SPOOL TYPE |      |     |
|--------|-----|------|------------|------|-----|
| TYPE   | S61 | S61R | S62        | S62R | S63 |
| BD612S | •   | •    | •          | •    | •   |
| BD612B | •   | •    | •          | •    | •   |
| BD612J | •   | •    | •          | •    | •   |
| BD622S |     |      |            |      | •   |
| BD622B |     |      |            |      | ٠   |
| BD613S | •   | •    | •          | ٠    | ٠   |
| BD613B | •   | •    | •          | ٠    | ٠   |
| BD613J | •   | •    | •          | •    | •   |
| BD623S |     |      |            |      | •   |
| BD623B |     |      |            |      | •   |

| BODY   |      | PLUG | ТҮРЕ |      |
|--------|------|------|------|------|
| TYPE   | RD01 | RD02 | RD03 | RD04 |
| BD612S | •    | •    |      |      |
| BD612B | •    |      | •    |      |
| BD612J | •    |      |      | •    |
| BD622S | •    |      |      |      |
| BD622B | •    |      |      |      |
| BD613S | •    | •    |      |      |
| BD613B | •    |      | •    |      |
| BD613J | •    |      |      | •    |
| BD623S | •    |      |      |      |
| BD623B | •    |      |      |      |




## INSTALLATION AND MAINTENANCE

The following drawing represents a complete assembly. The example shown is a monoblock diverter EDM10A and the main tightening torques are shown.




## SPARE PARTS LIST

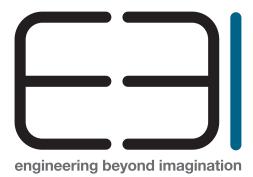
The following drawing represents a complete assembly. The example shown is a monoblock diverter EDM10A with solenoid actuation kit and return action kit without drain.



All stackable diverters include an assembly section kit. Each assembly section is composed by 4 screws, 8 growers and 4 nuts. Screw's lenght depends on the number of sections.



| REFERENCE | CATALOGUE CODE | ORDER CODE | DESCRIPTION                | NOTE                                                            |  |
|-----------|----------------|------------|----------------------------|-----------------------------------------------------------------|--|
| 1         | N2             | A01010001  | Assembly kit for 2 section |                                                                 |  |
|           | N3             | A01010002  | Assembly kit for 3 section | Each Assembly kit<br>contains 4 screws, 8 growers<br>and 4 nuts |  |
|           | N4             | A01010003  | Assembly kit for 4 section |                                                                 |  |


| REFERENCE | CATALOGUE CODE | ORDER CODE | DESCRIPTION                                                         | NOTE                |
|-----------|----------------|------------|---------------------------------------------------------------------|---------------------|
| 2         | S61            | A01150001  | 2 positions with ports CLOSED<br>in transit position - STANDARD     |                     |
|           | S62            | A01150002  | 2 positions with ports CONNECTED in transit position - STANDARD     |                     |
|           | S61R           | A01150033  | 2 positions with ports CLOSED<br>in transit position - REVERSE      |                     |
|           | S62R           | A01150005  | 2 positions with ports CONNECTED<br>in transit position - REVERSE   |                     |
|           | S63            | A01150006  | 2 positions with ports CONNECTED<br>in transit position - STANDARD  | only external drain |
|           | AR01           | A01200001  | Solenoid actuation kit 12 VDC<br>(DIN 43650 ISO 4400)               |                     |
|           | AR02           | A01200002  | Solenoid actuation kit 24 VDC<br>(DIN 43650 ISO 4400)               |                     |
| 3         | AR03           | A01200003  | Solenoid actuation kit 12 VDC<br>(DEUTSCH DT04-2P-L)                |                     |
|           | AR04           | A01200004  | Solenoid actuation kit 24 VDC<br>(DEUTSCH DT04-2P-L)                |                     |
|           | AR05           | A01200011  | Solenoid actuation kit 12 VDC<br>(AMP JUNIOR)                       |                     |
|           | AR06           | A01200012  | Solenoid actuation kit 24 VDC<br>(AMP JUNIOR)                       |                     |
|           | AR07           | A01200010  | Solenoid actuation WITHOUT COIL                                     |                     |
|           | AR08           | A01200008  | Solenoid actuation kit 12 VDC<br>(DIN 43650 ISO 4400) with override |                     |
|           | AR09           | A01200009  | Solenoid actuation kit 24 VDC<br>(DIN 43650 ISO 4400) with override |                     |
|           | AR10           | A01200013  | Pneumatic actuation kit<br>(M18x1)                                  |                     |
|           | AR11           | A01200014  | Pneumatic actuation kit<br>(7/16-20 UNF SAE4)                       |                     |
|           | AR23           | A01200025  | Solenoid actuation kit 12 VDC<br>(DEUTSCH DT04-2P-L) with override  |                     |
|           | AR24           | A01200026  | Solenoid actuation kit 24 VDC<br>(DEUTSCH DT04-2P-L) with override  |                     |
|           | AR25           | A01200027  | Solenoid actuation kit 12 VDC<br>(AMP JUNIOR) with override         |                     |
|           | AR26           | A01200028  | Solenoid actuation kit 24 VDC<br>(AMP JUNIOR) with override         |                     |
| 3.1       |                | C04010001  | Solenoid 12 VDC (DIN 43650 ISO 4400)                                |                     |
|           |                | C04010002  | Solenoid 24 VDC (DIN 43650 ISO 4400)                                |                     |
|           |                | C04010003  | Solenoid 12 VDC (DEUTSCH DT04-2P-L)                                 |                     |
|           |                | C04010004  | Solenoid 24 VDC (DEUTSCH DT04-2P-L)                                 |                     |
|           |                | C04010013  | Solenoid 12 VDC (AMP JUNIOR)                                        |                     |
|           |                | C04010014  | Solenoid 24 VDC (AMP JUNIOR)                                        |                     |
| 3.2       |                | C04020001  | Solenoid cartridge M18X1                                            |                     |

**Diverters** 

| REFERENCE | CATALOGUE CODE | ORDER CODE | DESCRIPTION                                         | NOTE                                                           |  |
|-----------|----------------|------------|-----------------------------------------------------|----------------------------------------------------------------|--|
| 4         | RD01           | A02010001  | Plug kit INTERNAL drain (M18X1)                     |                                                                |  |
|           | RD02           | A02010002  | Plug kit EXTERNAL drain (M18X1)<br>7/16-20 UNF SAE4 |                                                                |  |
|           | RD03           | A02010003  | Plug kit EXTERNAL drain (M18X1)<br>G 1/4            |                                                                |  |
|           | RD04           | A02010021  | Plug kit EXTERNAL drain (M18X1)<br>G 1/4 JIS        |                                                                |  |
| 5         |                | A01190015  | Assembly gasket diverter N2                         | Contains 2 O-rings                                             |  |
|           |                | A01190016  | Assembly gasket diverter N3                         | Contains 4 O-rings                                             |  |
|           |                | A01190017  | Assembly gasket diverter N4                         | Contains 6 O-rings                                             |  |
| 6         |                | A01020006  | Check valve                                         | All arrangement bodies<br>are equipped with 2 check<br>valves. |  |



1



## **EBI MOTION CONTROLS S.r.I**

Via Andrea Costa 11/2 40057 Cadriano Fraz. di Granarolo dell'Emilia (BO) TEL. +39 051.0188.800 FAX 051.701.093

> info@ebimc.com www.ebimc.com